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Abstract

We present the first thermodynamically correct calculation of the noise in a simple nonlinear resistive bolometer or calorimeter
operated out of equilibrium. The solution is rigorous only for first- and second-order deviations from equilibrium, and for
the linear and quadratic terms of dissipative elements. In contrast, existing models of noise in resistive bolometers are based
on the application of equilibrium theories to a system that is often nonlinear and out of equilibrium. We derive solutions
applicable both in and out of steady state. The noise has power spectral density different from the equilibrium theory, and it
has higher-order correlations and non-Gaussian characteristics. The results do not apply to non-Markovian hidden variables
in the bolometer.
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1. Introduction

The equilibrium thermodynamics of resistive
bolometers and calorimeters is well established [1,2].
However, these calculations are not rigorous in non-
equilibrium systems (in which the bolometer tempera-
ture is different from the bath temperature). An analy-
sis of the noise of a simple nonlinear, nonequilibrium
bolometer is a useful step towards understanding and
optimizing the noise in a real-world bolometer or
calorimeter. For instance, in the case of the supercon-
ducting transition-edge sensor (TES), noise in excess
of equilibrium sources is usually observed, and is of-
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ten labeled as “excess noise.” Most attempts to explain
this noise focus on the complicated, non-Markovian
details of the superconducting system. However, it
is beneficial to develop a better understanding of the
baseline thermodynamic noise of a simple system to
better understand what is meant by “excess.”

2. Quadratic Markovian bolometers

We assume a simple Markovian bolometer (i.e.,
with no hidden variables such as internal temperature
gradients and fluctuating current paths). We consider
an external voltage bias, which we model as an inter-
nal capacitor in series with the bolometer (Fig. 1) with
capacitance C → ∞. The system is thus closed and
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Fig. 1. A model of a voltage-biased resistive bolometer. The ther-
mal circuit consists of a thermal mass at temperature T with en-
ergy U(T ) and heat capacity c(T ), a temperature-dependent ther-
mal conductance G(δT ), and a heat reservoir at fixed temperature
T0, where δT ≡ T −T0. A heat flow dQ/dt crosses the thermal
conductance to the heat reservoir. The electrical circuit consists of
a resistor with both current and temperature dependence R(I,δT ),
an inductance L with current I and flux Φ = LI, and a capacitor
C → ∞ with “external” voltage Vext and charge q = CVext . Joule
heating in the resistor, dJ/dt , is dissipated in the thermal mass.

time-reversal invariant. Elsewhere, we will consider a
current biased bolometer modeled with a parallel in-
finite inductance.

The electrical resistance R and thermal conductance
G are nonlinear functions of I and δT , both of which
are small near equilibrium. If R and G are analytic at
equilibrium we can express them as a Taylor series
expansion to the first order:

R(I,δT ) ≡ V
I
≈ ρ1 + ρ2I + ζδT , (1)

G(δT ) ≡ dQ/dt
δT

≈ γ1 + γ2δT . (2)

The macroscopic relaxation equations describing
the evolution of the system in Fig. 1 are

L
dI
dt

= −ρ1I−ρ2I2 − ζIδT − q
C

(3)

dq
dt

= I (4)

dU
dt

= −γ1δT − γ2δT 2 − I
dΦ
dt

− q
C

dq
dt

. (5)

We choose to consider the system as a microcanon-
ical ensemble rather than a canonical ensemble to
facilitate the analysis of a nonequilibrium model with
different temperatures T and T0. As state variables,
we choose the flux in the inductor xΦ ≡ Φ = LI,
the charge on the capacitor xq ≡ q, and the thermal
energy of the bolometer, xU ≡ U . The first step in
the analysis is to determine the entropy change. The
heat flow dQ transfers energy from the bolometer at

temperature T to the heat reservoir at T0 with en-
tropy change dS = (1/T0−1/T)dQ. The energy that
flows from the capacitor and inductor, dJ, dissipates
power into the bolometer at temperature T , with
dS = dJ/T = −(1/T)(Φ/L)dΦ − (1/T )(q/C)dq.
The change in bolometer energy is dU = dJ−dQ, so
the total change in entropy is

dS =
(

1
T
− 1

T0

)
dU − 1

T0

Φ
L

dΦ− 1
T0

q
C

dq . (6)

In a microcanonical ensemble, the thermodynamic
force, Xα, conjugate to the state variables xα is [3]
Xα = −∂S/∂xα, where α = Φ,q,U . The thermody-
namic forces conjugate to our state variables are XΦ =
Φ/T0L = I/T0, Xq = q/(T0C) = Vext/T0, and XU =
(1/T0−1/T) = δT/(T0T ).

If all functions in the relaxation equations are an-
alytic at equilibrium, the time derivatives of the state
variables can be expressed as a series expansion of the
thermodynamic forces. Near equilibrium, the thermo-
dynamic forces are small, and we carry the expansion
out to the second order:

dxα

dt
≈ Lα,βXβ +

1
2

Lα,βγXβXγ , (7)

where summation is carried out over repeated in-
dices. The constant term is zero since the expansion
is around equilibrium, and the analysis is rigorous up
to quadratic deviations from equilibrium.

To express the relaxation in this form, we use the
expressions for the thermodynamic forces to eliminate
the state variables and their derivatives from the right
hand sides of (3) - (5). We drop all terms above the
quadratic in any combination of the thermodynamic
forces, arriving at

dΦ
dt

= −ρ1T0XΦ −ρ2T
2
0 X2

Φ −T0Xq − ζT 3
0 XΦXU (8)

dq
dt

= T0XΦ (9)

dU
dt

= T 2
0 X2

Φρ1 − γ1T 2
0 XU − (γ1T 3

0 + γ2T 4
0 )X2

U . (10)

In these equations, Lq,Φ = −LΦ,q = T0, in agreement
with the Onsager-Casimir reciprocal relations [4]
Lα,β = εαεβLβ,α, where the time reversal parity of the
variables is εΦ = −1,εq = 1,εU = 1.

The fluctuations of the state variables xα can be
characterized by their correlations. In the quadratic
approximation, only one-fold, two-fold, and three-fold
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correlators are nonzero. The correlators are related to
the average fluctuations in the state variables over time
τ → 0:

Kα ≡ lim
τ→0

(τ−1〈∆xα〉) (11)

Kαβ ≡ lim
τ→0

(τ−1〈∆xα∆xβ〉) (12)

Kαβγ ≡ lim
τ→0

(τ−1〈∆xα∆xβ∆xγ〉) . (13)

We use Stratonovich’s nonequilibrium Markovian
fluctuation-dissipation relations [3] to derive the cor-
relators from the Lα,β and Lα,βγ parameters in (8) -
(10), dropping terms of higher order than quadratic.
These relations are derived assuming only Markovian
processes, time-reversal symmetry, and consistency
with equilibrium thermodynamics. The result is seven
unique nonzero correlators:

Kq =
Φ
L

= I (14)

KΦ = − q
C
−ρ1I−ρ2I

2 − ζIδT + kBT0
ρ2

L
(15)

KU =ρ1I2 − γ1δT − γ2δT 2+

kBT0

(
−ρ1

L
+

γ1 + γ2T0

c(T )

)
(16)

KΦΦ = 2kBT ρ1 +6kBT0ρ2I +2kBT0ζδT (17)

KUU = 2kBT0 (γ1T + γ2T0δT ) (18)

KUΦ = KΦU = −2kBT0ρ1I (19)

KΦΦΦ = −12(kBT0)2ρ2 . (20)

3. Conclusions

We will present a detailed analysis of (14)-(20) else-
where; here we make the brief comments that space
allows. First, the noise is weakly non-Gaussian be-
cause of the threefold correlator (20).

We can write nonlinear Ito-Langevin equations

dxα(t)
dt

= Kα(x)+uαδ(x)ξδ(t) , (21)

where ξδ(t) are delta-function-correlated stochastic
forces with zero mean. From (21), (16) and (15), for
C → ∞, a nonequilibrium steady-state exists with a
stable 〈I〉 and 〈δT 〉. The small terms proportional to
kBT0 cancel the rectification of equlibrium thermody-
namic noise.

From (21) and (17), the power spectral density
(PSD) of the Langevin voltage fluctuations V (t) ≡
uΦδ(x(t))ξδ(t) is

SV = 4kBT ρ1 +12kBT0ρ2I +4kBT0ζδT , (22)

which, for δT → 0, reduces to Stratonovich’s expres-
sion [3] for the voltage noise PSD in a quadratic
resistor. If αI ≡ ∂(log(R))/∂(log(T)) and βI ≡
∂(log(R))/∂(log(I)), then, dropping second-order
terms,

SV = 4kBTR(1+2βI) , (23)
which is independent of αI to first order. Near equi-
librium, (23) confirms the ansatz of [5] for the voltage
noise PSD of a nonlinear bolometer.

From (18) the power noise is

SP = 4kBT0 (γ1T + γ2T0δT ) , (24)

which is consistent with the quadratic expansion
around equilibrium of the expressions in the literature
for phonon noise PSD in both the diffuse [1] and
specular scattering cases [6].

It will be interesting to extend the theory to expan-
sions of higher order than the quadratic, where SV may
depend on αI . Dissipationally undeterminable para-
meters appear in higher order expansions that prevent
a full solution solely from the dissipative properties
of the system. However, it may be possible to achieve
insight into the excess voltage noise that is observed
as a function of αI in a TES bolometer [7] by fitting
the experimental data to these expansions and treat-
ing the dissipationally undeterminable parameters as
fitting parameters.

This work was supported in part by NASA under
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